Electron Impact Dissociation of Ground and Metastable States of O_2 Molecule

Quantemol Ltd., University College London, London, WC1E 6BT, United Kingdom

This project has received funding from the European Commission for European Leadership Joint Undertaking under grant agreement No 662133. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Austria, Belgium, Germany, Italy, and Austria, Belgium, Germany, Italy.

Quanatemol Ltd.
University College London
London, WC1E 6BT, United Kingdom

Liu H, Shi
Quantemol Ltd., University College London, London, WC1E 6BT, United Kingdom

Quantemol is based at University College London and was founded by Prof. Jonathan Tennyson FRS and Dr Daniel Brown in 2004. The company develops unique software tools that bring accessibility to highly sophisticated research codes.

Quantemol-N
Quantemol based at University College London was founded by Prof. Jonathan Tennyson FRS and Dr Daniel Brown in 2004. It is a Java interface that allows users to run the R-Matrix codes with minimum scientific knowledge of scattering physics and minimum computational difficulty efficiently providing very good quality data to its users.

Quantemol-N can be used to perform electron-molecule scattering calculations producing elastic, electronic excitation, super-elastic excitation, impact dissociation, ionization, dissociative attachment, momentum transfer, rotational excitation cross sections and rate coefficients as well as resonance parameters and photoionization cross sections and rate coefficients as a function of energy.

Figure 1: Electron $O_2(2^3Σ^+)$ dissociation cross sections to the three non negligible combinations of states of the oxygen atoms.

Figure 2: Electron $O_2(2^3Σ^+)$ dissociation cross sections to the three non negligible combinations of states of the oxygen atoms.

Results

Figures 1, 3 and 4 show the impact dissociation of the ground, first and second metastable states of O_2 respectively. As noted by Itikawa1 production of $O(%)$ oxygen atoms is negligible. Our investigation and results agreed with this conclusion and consequently cross sections for this channel are assumed to be zero. There are some noisy areas in the cross sections at medium energies. This is because vibrational excitations which would have smoothed over this noise have not been taken into account in these calculations.

The large resonances which die off very quickly in the cross sections are triplet resonances and this behaviour is typical of this type of resonance.

Figure 7 shows the electron impact excitation cross section of the ground and metastable states of O_2 exciting these states into bound states. As expected the magnitudes from the metastable states are larger than from the ground state. The low energy behaviour of the $O_2(a^2Δ_g)$ cross section is explained by the situation of the $Δ_g$ resonance close to the threshold.

Quantum Chemistry Method

In this work we have carried out Close Coupling Complete Active Space Configuration Interaction (CC-CASCI) R-Matrix calculations within Quantemol-N to model the excitation cross sections from the ground of the Oxygen molecule $O_2(X^2Σ^+)$ and its two metastable states $O_2(σ^5Σ^+)$ and $O_2(σ^5Δ^3)$ to its excited bound and resonance states.

The ground state of O_2 was found to be $|3σ^2(1s^2,1s^2,1s^2,1s^2)|1σ^2(1s^2,1s^2,1s^2,1s^2)|1σ^2(1s^2,1s^2,1s^2,1s^2)|$. Orbitals were calculated using the augmented Dunning aug-cc-pVZ basis set. A CAS CI calculation freezing the lowest 5 orbitals and leaving active the degenerate 10 orbitals open and an additional 5 valence orbitals: [1s, 1s, 1s, 1s, 1s, 2p, 2p, 3p, 3s, 3s] was carried out. We have then used the potential energy curves (PECs) of Liu et. al.3 to match these excited states to dissociation channels thus deriving the electron impact dissociation cross sections.

References