Diagnostics of the plasma-surface interface: coupling experiments with simulations

A. Greb1, A. R. Gibson2, K. Niemi1, D. O’Connell1, T. Gans1

1 York Plasma Institute, Department of Physics, University of York, UK
2 Centre for Plasma Physics, Queen’s University Belfast, UK
Motivation

Understanding the dynamics of plasma-surface interface

Key importance:
- Determination of surface condition
- Measurement of important reactive species (e.g. atomic oxygen)

Most promising approach: Coupling of optical diagnostics and simulations

Advanced Real-Time Process Control & Monitoring
Experimentally Benchmarked Fluid Model [1]

- Experimental setup as foundation for model
 - Capacitively Coupled Oxygen Discharge
 - Geometric asymmetry
 - RF power input at 13.56 MHz
 - DC bias voltage (calculated self-consistently based on flux balance)
 - 40 mm electrode gap, typical operation pressures: 10 – 100 Pa (~100 – 1000 mTorr)

- Includes electron dynamics & simple plasma chemistry
 - Considered species: e, O₂, O₂⁺, O⁻, O₂(¹Δ)
 - Improved ion mobility treatment
 - Iterative multi-scale modelling approach

Simulation: Impact of Surface Conditions

- Consider important surface reaction mechanisms:
 - Surface neutralisation
 - $O_2(^1\Delta)$ surface loss probability
 - Secondary electron emission
 - Induced by O_2^+ ions

<table>
<thead>
<tr>
<th>Electron density</th>
<th>$O_2(^1\Delta)$ density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct impact</td>
<td>O_2^+ / O^- densities</td>
</tr>
<tr>
<td>Impact on charged particles</td>
<td>Excitation mechanisms</td>
</tr>
</tbody>
</table>

- Actual surface condition determines how much $O_2(^1\Delta)$ is neutralised.
Experiment: Excitation Dynamics ($\lambda = 844$ nm)

- **Teflon wafer [2]**
 - Two excitation features present
 - Sheath expansion excitation (I)
 - Sheath collapse excitation (II)
 - (II) more pronounced than (I)

Experiment: Excitation Dynamics \((\lambda = 844\ \text{nm})\)

- Stainless steel wafer [2]
 - Two excitation features present
 - Sheath expansion excitation (I)
 - Sheath collapse excitation (II)
 - Change in prominence and shape

Experiment (Stainless steel)

Simulation (Stainless steel)

List of Investigated Materials

- Experimental condition:
 - Oxygen plasma
 - 40 Pa, 300 V, 13.56 MHz, 40 mm gap

<table>
<thead>
<tr>
<th>Wafer material</th>
<th>SDO surface loss probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless Steel</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>Tungsten</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>Aluminium</td>
<td>6×10^{-5}</td>
</tr>
<tr>
<td>Gold</td>
<td>6×10^{-5}</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>Copper</td>
<td>2×10^{-4}</td>
</tr>
<tr>
<td>Silicon</td>
<td>4×10^{-4}</td>
</tr>
<tr>
<td>Teflon</td>
<td>3×10^{-3}</td>
</tr>
</tbody>
</table>
Work Function Analysis

- **Theory:**
 - High SE emission for low material work function

$$\gamma_{se} \approx 0.016 (\epsilon_{i,iz} - 2\epsilon_{\Phi})^*$$

 if $\epsilon_{i,iz} > 2\epsilon_{\Phi}$

Secondary electron emission coefficient

- **Experiment:**
 - Use best defined materials
 - Qualitative comparison of excitation signal

- **Confirmation of theoretical assumption**
 - Qualitative comparison as benchmark for other materials
Combined results for investigated wafer materials

<table>
<thead>
<tr>
<th>Wafer material</th>
<th>SDO surface loss probability</th>
<th>Secondary electron emission coefficient (by O$_2^+$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless Steel</td>
<td>1×10^{-5}</td>
<td>≈ 0.030</td>
</tr>
<tr>
<td>Tungsten</td>
<td>1×10^{-5}</td>
<td>≈ 0.043</td>
</tr>
<tr>
<td>Aluminium</td>
<td>6×10^{-5}</td>
<td>0.060 ± 0.003</td>
</tr>
<tr>
<td>Gold</td>
<td>6×10^{-5}</td>
<td>0.020 ± 0.002</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>1×10^{-4}</td>
<td>≈ 0.040</td>
</tr>
<tr>
<td>Copper</td>
<td>2×10^{-4}</td>
<td>≈ 0.040</td>
</tr>
<tr>
<td>Silicon</td>
<td>4×10^{-4}</td>
<td>0.036</td>
</tr>
<tr>
<td>Teflon</td>
<td>3×10^{-3}</td>
<td>≈ 0.0</td>
</tr>
</tbody>
</table>
Conclusions

- Plasma dynamics can change surface condition (e.g. etching, deposition)
- Surface condition governs plasma parameters & dynamics

Synergistic coupling of simulations and measurements is key for development of Real-Time Metrology.
Thank you!